
Fabricable Eulerian Wires for 3D Shape Abstraction

WALLACE LIRA, Simon Fraser University

CHI-WING FU, The Chinese University of Hong Kong

HAO ZHANG, Simon Fraser University

Fabricable Eulerian WiresInput wire abstraction Physical wires assembled

Fig. 1. We develop a fully automatic method to compute a small number of machine fabricable wires, called Eulerian wires, that reproduce a wire sculpture
(left) with minimal overlap. Our method is able to find a globally optimal solution for the Iron, consisting of three wires (middle) with 0% overlap, in less than
one minute. The wires can be physically produced in 3D using a wire bending machine and then assembled (right).

We present a fully automatic method that finds a small number of machine
fabricable wires with minimal overlap to reproduce a wire sculpture design
as a 3D shape abstraction. Importantly, we consider non-planar wires, which
can be fabricated by a wire bending machine, to enable efficient construction
of complex 3D sculptures that cannot be achieved by previous works. We
call our wires Eulerian wires, since they are as Eulerian as possible with
small overlap to form the target design together. Finding such Eulerian wires
is highly challenging, due to an enormous search space. After exploring a
variety of optimization strategies, we formulate a population-based hybrid
metaheuristic model, and design the join, bridge and split operators to refine
the solution wire sets in the population. We start the exploration of each
solution wire set in a bottom-up manner, and adopt an adaptive simulated
annealing model to regulate the exploration. By further formulating a meta
model on top to optimize the cooling schedule, and precomputing fabricable
subwires, our method can efficiently find promising solutions with low wire
count and overlap in one to two minutes. We demonstrate the efficiency of
our method on a rich variety of wire sculptures, and physically fabricate sev-
eral of them. Our results show clear improvements over other optimization
alternatives in terms of solution quality, versatility, and scalability.

CCS Concepts: • Computing methodologies → Shape modeling;

Authors’ addresses: Wallace Lira, Department of Computing Science, Simon Fraser
University, wpintoli@sfu.ca; Chi-Wing Fu, Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, cwfu@cse.cuhk.edu.hk; Hao Zhang,
Department of Computing Science, Simon Fraser University, haoz@cs.sfu.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/11-ART240 $15.00
https://doi.org/10.1145/3272127.3275049

Additional Key Words and Phrases: fabrication, wire, Eulerian, sculpture

ACM Reference Format:

Wallace Lira, Chi-Wing Fu, and Hao Zhang. 2018. Fabricable Eulerian Wires
for 3D Shape Abstraction. ACM Trans. Graph. 37, 6, Article 240 (Novem-
ber 2018), 13 pages. https://doi.org/10.1145/3272127.3275049

1 INTRODUCTION

Wire sculptures [Wikipedia 2018b] are art works created out of
line and curve structures. To design this form of art work, artists
often use a minimal set of lines and curves to outline the shape or
appearance of a target object. The resulting wireframe sculpture
presents itself as a shape abstraction, exhibiting a tasteful minimalist
feel; see Figure 2. However, existing wire sculptures have so far been
created mostly through the hands of skilled artists and professional
craftsmen. Both the design and physical construction processes are

Fig. 2. Example wire sculptures that exemplify a minimalist feel. Designed
by Louise Dawn Wilson.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275049
https://doi.org/10.1145/3272127.3275049

240:2 • Wallace Lira, Chi-Wing Fu, and Hao Zhang

time consuming and demand highly sophisticated skills. Even with
contemporary wire bending machines (see Figure 3) which can free
humans from the low-level task of physically bending the wires,
one challenging computational problem that remains is how to lay
out the wires to reproduce a complex wire sculpture.

Given a wire abstraction of a 3D shape represented as a graph, the
wire layout problem seeks a set of wires, each a simple path in the
input graph, which together cover the graph. Ideally, wires should
not overlap to save fabrication time and material, and to avoid
thickening of the wires for aesthetics. On the other hand, making
each graph edge a separate wire, while ensuring zero overlap, is a
poor solution, since all the wires must be joined to form a connected
wire sculpture and a high wire count complicates the assembly task.

Finding a single long wire that covers the entire input graph is the
most efficient, if the wire visits every graph edge exactly once. This
is the Eulerian path problem, one of the most celebrated problems
in graph theory. However, we cannot expect a single wire to work
for general graphs. At the same time, to take advantage of a wire
bending machine, which can shape the wires with high precision,
we must place additional constraints on the wires so that they are
fabricable. For example, while a fabricable wire can be non-planar ,
as shown in Figure 3(e), it must not collide with itself and the ma-
chine, since the collision interferes the physical fabrication process.
Therefore, when considering machine fabricability, it is unlikely
that a single wire can cover an entire wire sculpture.

Our wire layout problem is a multi-path variation of Eulerian path.
We wish to find as few as possible, long and non-planar wires, with
minimal overlap, to cover an input graph. Each wire should be “as
Eulerian as possible” and fabricable, e.g., using the machine shown
in Figure 3. The problem, referred to as the Eulerian wire prob-
lem in our work, is computationally challenging, since it relates
to the optimization version of set cover , which is NP-hard, as we
seek a minimal set of wires to cover the input graph. Incorporating
overlap minimization, which may be in conflict with wire count min-
imization, further leads to a multi-objective optimization. Moreover,
having non-planar wires helps lower the wire count and enriches
the family of wire sculptures that one may build with the machine.
However, it adds complexity to fabricability analysis, as well as to
the solution search. Last but not the least, fabricability test involves
collision detection, which can be costly for long wires.

In this paper, we develop a fully automatic and efficient compu-
tational method for solving the Eulerian wire problem, enabling
us to produce physical wire abstractions of a variety of 3D shapes.
Given the immense search space involved in forming the wires,
we design several strategies to approach the problem in a tractable
manner; see Figure 4. First, we precompute subwires and subwire
connections that are fabricable to reduce necessary collision tests
for fabricability during the solution search. Second, we define an
objective function in terms of wire count and overlaps to guide the
solution search. Most importantly, we explore a wide variety of op-
timization strategies, and then formulate a population-based hybrid
metaheuristic model to efficiently solve the optimization, combining
the merits of Simulated Annealing and Particle Swarm Optimization.
Specifically, we design the join, bridge and split operators to refine

bending pin(a)
feeder wire spool

feeding

bending

(c) (d)(b)

revolving

sample
wire

(e)

bending head

bending pin

main axle

Fig. 3. We employ this 3D wire bending machine (a) for fabricating wires. (b-
d) the machine operations, which together allow the shaping of non-planar
wires, and (e) a sample wire fabricated by the machine.

the solution wire sets in the population. We start the solution ex-
ploration in a bottom-up manner, and adopt an adaptive simulated
annealing model to regulate the exploration of each solution wire
set. By further formulating a meta model on top to optimize the
cooling schedule, our method can then efficiently search the vast
search space and look for the optimum solution.

Our current pursuit of the Eulerian wire problem draws inspiration
from two recent works. In WrapIt, Iarussi et al. [2015] decomposed
a 2D wire jewelry piece into few segments, which are manually
produced by bending wires with the assistance of a 3D printed jig.
Miguel et al. [2016] assembled cross-sectional planar-rod structures
to abstract 3D shapes, where the planar wires that make up the
3D frame sculpture were given as part of the input. In contrast,
the core computational step in our work involves a search for an
optimal set of, possibly non-planar, wires to build the input 3D
wire abstraction. With non-planar wires, our method can produce
efficient constructions of general and complex 3Dwire sculptures, in
particular, freeform structures, which may not admit suitable planar-
rod representations such as a simple helix. As shown in Figure 1,
while the input design spans many planes, our method produces
a construction using just three Eulerian wires with a 0% overlap,
which turns out to be a globally optimal solution.

Contributions. Our overall contribution is the first fully automatic
method that constructs 3D wires for fabricating wire sculptures.
This is a novel solution for fabricating general and complex 3D wire
sculptures beyond planar cross-sections. Another contribution is our
computational method that can efficiently find few Eulerian wires
with minimal overlap to cover a wire sculpture design. This is made
possible by means of our “Annealing Swarm” optimization model
and the subwire mechanism.We evaluate our computational method
through various experiments and fabricated results for wire abstrac-
tions of a variety of 3D shapes, and demonstrate clear improvements
of our method in overall quality, versatility, and scalability, in com-
parison to other optimization alternatives.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

Fabricable Eulerian Wires for 3D Shape Abstraction • 240:3

2 RELATED WORK

Physical fabrication of 3D objects has been an emerging topic in
computer graphics research in recent years. While most works
focused on creating solid 3D models via additive manufacturing [Liu
et al. 2014; Shamir et al. 2016; Umetani et al. 2015], some were
devoted to the design and fabrication of wireframe models, for low-
fidelity prototyping [Huang et al. 2016; Mueller et al. 2014; Wu et al.
2016; Yue et al. 2017], artistic expression [Chen et al. 2016; Zehnder
et al. 2016], or achieving certain deformation behavior [Pérez et al.
2015]. What is common in these works is that the wireframe models
were meant to closely approximate the given 3D shapes. Hence,
their results tend to densely cover the surface of the given shape, or
were fabricated layer by layer using conventional 3D printers. The
wire mesh of Garg et al. [2014] also features a dense cover, but the
meshes were built using many warped pieces of planar and woven
wires arranged in a dense regular grid. These woven wires are pre-
manufactured and available in large quantities. Another related
work is Zimmer et al. [2014], which computes a Zometool structure
with balls and sticks to form a given surface approximation. In
contrast to these works, the wire sculptures we build are minimalist
abstractions of freeform 3D shapes. In addition, the physical wires
are fabricated using a 3D wire bending machine.

A recent work byMiguel et al. [2016] produces 3D shape abstractions
using a set of planar wires. Given a planar wire set, their main task is
to compute an ordering for wire assembly and optimize the final wire
shapes for structural stability under frictional contacts. A strong
merit of their physical products is that no thin tyingwires are needed
to stabilize the assembled wires, unlike WrapIt [Iarussi et al. 2015]
and our work. In WireFab, Liu et al. [2017b] develop an interactive
tool for users to extract and edit skeletal wires of 3D shapes, and to
arrange 3D printed connectors to join the wires into an articulated
design. Although the wire bending machine adopted by WireFab
is exactly the same as ours, their method was designed to output a
large quantity of wire segments that are joined by connectors for
producing articulated movement. Compared to [Liu et al. 2017b;
Miguel et al. 2016], our work tackles an entirely different problem.
We aim for an automatic method to compute an almost Eulerian
cover of a wire sculpture design with minimum number of long, and
possibly non-planar, wires, while considering machine fabricability
of the wires in our method formulation.

On a technical level, the work most closely related to ours is WrapIt,
by [Iarussi et al. 2015]. Its input is a line drawing of a 2D jewelry
design represented by a graph. The core computational step involves
a decomposition of the graph into non-overlapping sub-graphs, each
being a smooth curve preferred to have at least two contacts with
others. The decomposition is formulated as a graph labeling problem
and solved using Simulated Annealing. Like their work, we also seek
a minimum number of wires to cover the sculpture. However, we
consider wire fabricability in 3D, which adds a key new dimension
to the problem. Fabricability is a global property of an entire wire,
since a wire, after extended by an edge segment, its fabricability
may be invalidated by any edge in the wire, not just the new edge
or the one next to it. In contrast, wire smoothness, considered in
WrapIt [Iarussi et al. 2015], is a local property. Moreover, we consider

and allow overlap between wires, so that our solution wires may
overlap with one another to minimize the overall wire count; yet
we also seek to minimize the wire overlap in our formulation.

Further, WrapIt generates a 3D-printed jig with support walls to
assist users to manually bend the wires, while in our work, the wires
are automatically bent using a 3D wire bender. Hence, we need to
consider machine fabricability extensively in our computational
framework. Shifting from 2D input graphs, as WrapIt, to 3D input
graphs, as our problem, significantly increases the computational
complexity of the problem, especially when one considers the fabri-
cability constraints inherent to our approach (see Figure 1 for some
sample complex wires). Putting together the other challenges, we
must efficiently explore wires in the vast search space.

Some other recent works aim to facilitate the creation of wire art
and sculptures in various problem settings. Torres et al. [2016]
improve the WrapIt system by considering wire forging, assembly
and weaving. Liu et al. [2017a] present a method to reconstruct the
geometry of a 3D wire art piece from multi-view images. Yue et
al. [2017] develop WireDraw, an interactive system to assist users
in creating wireframe models using a 3D drawing pen, where visual
guidance in the form of virtual strokes is provided in a mixed reality
display for users to follow and fabricate more accurate models.

3 PROBLEM FORMULATION

Input and output representations. The input to our method is a wire
sculpture design. Such a design can be obtained via automatic or
semi-automatic curve feature extraction from a 3D shape [Gal et al.
2009; Pan et al. 2015], or through an artistic design process, e.g.,
from design sketches [Xu et al. 2014]. Moreover, one may create a
design manually by using conventional 3D modeling tools, e.g., by
sketching on a 3D shape’s surface, which serves as a reference.

Technically, we represent the input design as an undirected graph
G = (V , E); see Figure 4(a). Initially, each node inV is a 3D junction
point in the design, and each edge in E is a segment joining two
junctions; if any edge in E is not fabricable, we recursively split it
into smaller edges and update G accordingly. The output from our
method is a set of n wires, denoted as W. Each wire is represented
as a simple path in G without revisiting any node. The union of all
the wires in W should cover all the edges in E for W to be a valid
solution. Moreover, each wire inW must be machine fabricable.

Objective function. Letting the machine produce an individual wire
for each edge segment and then manually connecting the wire seg-
ments into the sculpture would involve a highly tedious fabrication
and assembly process. Instead, we seek a minimum number of long
and fabricable wires, which we called Eulerian wires, possibly in 3D,
to cover the input graph with minimized overlap. To guide the pro-
cess of searching for the solution wire set W, we aim to minimize
the following objective function:

E(W) =
[
(1 − α) ·

n

|E |
+ α ·

olp(E,W)

L0

]
, (1)

where α is a weight, which is empirically set as 0.03; n is normalized
by the edge count |E |; L0 =

∑
e ∈E |e | is the total length of all the

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

240:4 • Wallace Lira, Chi-Wing Fu, and Hao Zhang

(a) input graph

precomputed information

(e) fabricated wires

(f) final sculpture(d) annealing swarm

(b) subwires

(c) subwire connectable tables

operators: join, bridge & split

Fig. 4. Overview of our approach. From the input design (a), we first find all fabricable short wires, namely subwires (b), in the design, and then find all
subwire pairs that are connectable and fabricable together (c). Then, we model an annealing swarm framework to simultaneously evolve a set of wire solutions,
namely particles: each particle has its own annealing parameters and a wire set, which is initially the set of individual edge segments in the input, and we
design three operators (split, join, and bridge) to update the particles’ wire set accordingly. Upon termination, we pick the particle with the best objective
value, fabricate its wire set using a wire bender (e) and compose the wires into the final sculpture (f).

edges in E (|e | denotes the length of edge e), and the olp function
sums up the amount of overlaps among the wires inW:

olp(E,W) =
∑
e ∈E

[
cnt(e ,W) − 1

]2
· |e | , (2)

where the cnt function counts the number of wires in W that pass
through e . Note that we design the olp function in this form to
penalize excessive overlaps for aesthetic concerns, and we further
normalize it by L0 in Eq. (1), since edge lengths (i.e., |e | in L0 and
|e | in Eq. (2)) are all computed in virtual 3D space.

Wire fabrication constraints. After setting up the machine shown
in Figure 3(a), it can perform three operations to bend 3D wires:

i) feed the wire through the bending head (see Figure 3(b));

ii) bend the wire using the bending pin (see Figure 3(c)); and

iii) revolve the bending head around the main axle to change the
orientation of the bending plane (see Figure 3(d)).

Bending-and-shaping wires is a mechanical process that involves
two kinds of fabrication constraints. First, the portion of the wire
that has extruded out of the bending head should not collide with
the machine during any operation. Second, there is a mechanical
limit in the bending angle (i.e., 120◦) that the machine supports. See
Section 5.1 for the details of these constraints.

4 BACKGROUND AND OVERVIEW OF APPROACH

Initial attempts. We tried several different approaches to find Euler-
ian wires. The first approach finds a large pool of fabricable and
preferably long paths (103 to 106) in G as candidates, and computes
a greedy set cover [Kleinberg and Tardos 2005] to find minimal
wires with small overlaps. The advantage of the approach is that all

candidate wires are prepared to be fabricable, so we do not need to
test wire fabricability during the solution search. However, we can-
not effectively reduce the wire count and overlaps, except for simple
inputs. Since enumerating all possible paths in a graph is already an
NP complete problem, we unlikely have sufficient candidate wires
that well match one another for forming good solutions.

The second approach makes use of the subwire formulation in Sec-
tion 5: subwires are precomputed short wires that are ensured to be
fabricable. The approach picks the longest unvisited subwire and
iteratively extends it by joining a subwire, as long as the combined
wire is fabricable; when the wire is no longer extensible, we pick
an unvisited subwire and repeat the process until the entire graph
(G) is covered. The approach can find better results in shorter time
compared to the first approach, but it cannot effectively lower the
wire count, since it greedily picks and extends subwires.

Our third attempt is a beam search model [Wikipedia 2018a], where
we build a search tree with partial wire set solutions as internal
nodes and full solutions as leave nodes. Compared to the second ap-
proach, using beam search can more accurately evaluate the quality
of each decision: extend an existing wire or start a new wire. Hence,
its results usually have lower wire count and overlap, compared to
previous approaches. However, it requires a considerable amount of
computing time and resource, and it does not scale well to produce
good solutions when the model complexity increases.

From the initial attempts, we learn that it is hard for top down
methods (first approach) to pre-determine a set of good candidates
due to the vast search space. From the bottom up methods (second
and third approaches), we learn that greedy strategies can easily
trap in local minima. In addition, while evolving a pool of solutions
certainly helps the method explore a larger search space, we find

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

Fabricable Eulerian Wires for 3D Shape Abstraction • 240:5

that more efficient search strategies are yet required, particularly
for handling more complex sculpture models.

Our approach. We start this work by exploring a wide variety of
optimization strategies. Beyond the initial attempts described above,
we further explore several metaheuristic methods, and then for-
mulate a population-based hybrid metaheuristic model, we called
annealing swarm, to solve the optimization. The model is developed
by carefully adopting strategies in an adaptive simulated annealing
model [Azizi and Zolfaghari 2004] and a particle swarm optimiza-
tion model [Zhang et al. 2015] (see Section 6 for the details) for
maximizing the solution quality and search efficiency.

Figure 4 presents an overview of our approach. To start, we find all
machine fabricable short wires (subwires), and connectable subwire
pairs, in the input design; see Figure 4(b&c). These one-time steps
precompute wire fabricability information to speed up the search.
Next, it comes to our hybrid metaheuristic model; see Figure 4(d).
Our model initializes each solution wire set in the population as
individual edge segments in the input design, and starts the search
in a bottom-up manner. To refine the wires, three operators are
designed: (i) join two wires end-to-end; (ii) bridge two distant wires
by a subwire; and (iii) split a wire and remove its overlap parts. These
operators provide essential and sufficient capabilities to refine wires
for our problem, since they enable us not only to form longer wires
(join) or break them down (split), but also to introduce an overlap
to reduce the wire count (bridge). Further, we adopt an adaptive
simulated annealing model with fast cooling to refine wires in each
solution instance, and construct a meta model on top to optimize the
cooling schedule of each solution instance and to perform multiple
runs to adaptively evolve the solution instances. As a result, our
method can efficiently explore the search space and find promising
solutions in one to two minutes; see Figure 1 and Table 1.

Lastly, after the annealing swarmmodel terminates, we pick the best
solution instance with the lowest objective value, post-process its
wires, use a 3D wire bender to fabricate the wire set (see Figure 4(e)),
and assemble the wires into the final sculpture model; see Figure 4(f)
for a result and Sections 5 & 6 for the technical details.

5 CONSTRUCTING SUBWIRES WITH FABRICABILITY

5.1 Machine Fabricability

2nd bending
point

1st bending point

TODO:
Wallace

2nd bending
point

1st bending pointThe procedure to test the fabricability of a wire
is as follows. First, we check if any local bend-
ing angle along the wire exceeds the machine’s
bending limit. If so, we further see if we can use
a double bending strategy to stretch the limit to
160◦; see the inset figure on the right. Second,
we check if the wire collides with the machine when the machine
fabricates it. Here, we use a rectangular bounding box to model
the bending head (see Figure 3(a)), and successively simulate each
machine operation planned for the wire to detect if any portion of
the wire that has extruded out of the bending head collides with
the bending head during the operation; see Figure 3(b)-(d). For the

start
here

start
here

Fig. 5. We may fabricate this spiral-shaped wire (left) from inside to outside,
but if we reverse the fabrication direction, the resulting wire (right) may
become ill-shaped due to wire-machine collision.

bending operation, besides the bending head, we need to addition-
ally detect collision between the extruded wire and the main axle;
see Figure 3(c). Note also that a wire may be fabricated from either
ends, so we need to perform the test for each end in general.

Below, we summarize and define rules for wire fabricability:

• Rule 1: a wire is fabricable if it can be fabricated by the machine,
starting from one of its two ends.

• Rule 2: there are three cases for a fabricable wire: (i) forward fabri-
cable, (ii) backward fabricable, and (iii) fabricable in both directions.
Note that a wire fabricable from one of its ends may not be fabri-
cable if we start its fabrication from the other end. See Figure 5
for an example; we can fabricate the wire from inside to outside,
but not the other way around, due to wire-machine collision.

• Rule 3: if a wire is fabricable in a certain direction, any sub-portion
of the wire is also fabricable in the same direction. Conversely, if
a wire is not fabricable in a certain direction, any longer wire that
contains it is also not fabricable in the same direction.

In the solution search process, we maintain for each fabricable wire
in our data structure on whether the wire is forward fabricable,
backward fabricable, or fabricable in both directions.

5.2 Optimizing Fabricability Evaluation

Given an input design, we first identify all fabricable subwires (short
wires) in the graph representation (G) to minimize necessary fab-
ricability tests in the solution search process; see Section 6. As a
one-time pre-process, we first perform a breadth first search (BFS)
from each node in G to exhaustively find all fabricable short paths
started from the node. In the BFS, we stop to extend a path when
the path has four edge segments in G, or when it is found to be not
fabricable (by Rule 3). After we perform BFS from every node in G,
each path of four or fewer edge segments should have been explored
twice, once from each end, so the procedure has considered both
forward and backward fabricability for each fabricable subwire. We
denote S as the resulting set of all fabricable subwires in G.

The next one-time pre-process is to find subwires in S that can be
connected end-to-end as a single fabricable wire. In detail, for each
node in G, we first lookup the subwires in S that start or end at
the node. Then, we examine each pair of them, say s1 and s2, and
test if they are connectable at the shared end node, say v. To do so,

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

240:6 • Wallace Lira, Chi-Wing Fu, and Hao Zhang

we first test if s1 is forward fabricable toward v and s2 is forward
fabricable away from v, and vice versa. If the test is passed, we
further test for collisions when fabricating s2 after the bending head
extrudes s1, and vice versa. If no collision is found, the two subwires
are connectable, and we store their fabricability type (i.e., forward,
backward, or both) in the (per-node) lookup table.

6 ANNEALING SWARM MODEL

There are two factors that contribute to the size of the search space
in our problem. The first factor is the number of simple paths in the
input graph, since the associated wires, if fabricable, are candidates
in our solution. Note that the requirement of not having repeated
nodes actually relates to machine fabricability, since a fabricable
wire should not self-intersect. As an upper bound on the number
of simple paths, we consider a complete graph with |V| nodes,
and deduce that the graph has e · |V |!

2 unique simple paths; see the
supplemental material for the derivation. Having said that, for a
complete graph with just 15 nodes, it already has ∼1.78×1012 simple
paths. The second contributing factor is that a solution usually
requires multiple simple paths, rather than a single simple path. The
reason behind is that when considering machine fabricability, wires
should not self-intersect, so we often need multiple wires to cover
the input graph. Therefore, the problem is intrinsically to find a
few simple paths in a really huge set of simple paths; such set is
unknown and intractable when we search for the solution.

Given the vastness of the search space, we need approximation
heuristics to find close-to-optimal solutions in a reasonable time
using limited resources. Concerning this, we explored a wide variety
of optimization strategies besides those we discussed in Section 4,
including simulated annealing, tabu search, ant colony optimization,
and particle swarm optimization, and then formulate ametaheuristic
model with the following characteristics:

• First, rather than local search-based methods, which can easily
trap at local minima, we need metaheuristics, such as simulated
annealing, to allow the search to get out of local minima.

• Second, rather than maintaining and improving on a single solu-
tion, we need a population-based search that processes multiple
solution instances to explore the vast search space, where we
can further parallelize and accelerate the exploration.

• Lastly, rather than using simulated annealing parameters that
induce slower cooling, we use parameters for fast cooling and
adapt the cooling schedule of each solution instance in a meta-
heuristic model, aiming at enabling each instance to search
faster and go over a larger search space in multiple runs.

Population, or the solution instances. We employ a small population
of N solution instances in our model, where N is empirically set in
the range from 8 to 64, depending on the input model complexity;
see Section 7. Each solution instance has two parts, Wi and Ai ,
where i denotes the i-th solution instance; Wi denotes the wire
set of the i-th solution instance; and Ai = (T si ,Ci ,T

e
i) denotes its

(c) split

given wire
split
point

result
wire 2

overlap

other
wire

result
wire 1

other
wire

shortened
wire 1

result
wire 2

wire 1

wire 2

(b) bridge

bridge combined wire

wire 1

wire 2

(a) join

combined wire

Fig. 6. Operators for refining the wires in the solution instances.

annealing parameters: T si , Ci , and T
e
i are the starting temperature,

cooling factor, and ending temperature, respectively.

When our method starts, each solution instance is initialized as fol-
lows: (i)Wi is simply E, meaning that each individual edge segment
in input graph G is a wire in the initial Wi , so the search proceeds
in a bottom-up manner, and (ii) T si , Ci , and T

e
i are randomized in

ranges [20, 30], [0.02, 0.002], and [0.02, 0.002], respectively. These
ranges facilitate fast convergence when we improve a solution in-
stance in the adaptive simulated annealing model.

Operators to modifyWi . We design the following three operators
to modify the wire sets in the solution instances:

• Join randomly picks two wires in a solution instance that share
an endpoint node, and connects them into a single wire, if the
combined wire is fabricable; see Figure 6(a) for an illustration.

• Bridge randomly picks two wires in a solution instance, finds the
shortest path (measured in terms of total path length in 3D) as
a bridge between the endpoint nodes of the wires, and connects
the wires with the bridge into a single wire, if (i) the bridge is a
fabricable subwire in S and (ii) the combined wire through the
bridge is also fabricable; see Figure 6(b) for an illustration.

• Split randomly picks a wire in a solution instance, and randomly
picks an interior (non-endpoint) node in the wire to split it into
two separate wires. For each resulting wire, we further check
its starting and ending edge segments, and successively shorten
it by removing segments that overlap with other wires in the
solution instance; see Figure 6(c) for an illustration.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

Fabricable Eulerian Wires for 3D Shape Abstraction • 240:7

Algorithm 1 Adaptive Simulated Annealing (ASA) procedure
Require: Wi , T si , Ci , and T

e
i

T = T si // initialize temperature T
SE = { E(Wi) } // store obj. value: use Eq. (1)
Wbest = Wcurrent = Wi // current and best wire sets
while T > T ei do
Wcandidate = perturb(Wcurrent)
SE = SE ∪ { E(Wcandidate) } // use Eq. (1)
∆ = E(Wcandidate) − E(Wcurrent)
σ = standard deviation of values in SE
T = T

1+T ·ln(1+C)·/3σ // update temperature T
P = min(1 , exp(−∆

T))

if P < T then
Wcurrent = Wcandidate // update current wire set

end if
if E(Wbest) > E(Wcandidate) then

Wbest = Wcandidate // update best wire set
end if

end while
return Wbest

See the supplemental material for the technical procedures that
make use of the precomputed subwires to test or update wire fab-
ricability in each operator. Note also that to avoid re-testing the
fabricability of long wires, we maintain a hash table to store the
fabricability of long wires that we have tested so far.

Adaptive simulated annealing. In our metaheuristic model, we per-
form an adaptive simulated annealing procedure to iteratively refine
wires in each solution instance. Unlike standard simulated anneal-
ing, we use an adaptive model [Azizi and Zolfaghari 2004] and set a
very fast cooling schedule, so that the procedure can complete in a
split second on each solution instance. As a result, we can quickly
perform multiple runs on multiple solution instances, and explore a
much larger search space to improve the solutions.

Algorithm 1 presents the procedure. Given a solution instance as
the input, the procedure first initializes temperature T , SE to store
the objective values (Eq. (1)) of all the explored wire sets, as well as
the current and best solution wire sets. Next, the procedure enters
the main loop, where it first randomly generates a candidate wire
set using the perturb function; perturb randomly chooses with equal
probability to apply the join, bridge, or split operator to the current
wire set. Lastly, Algorithm 1 uses an adaptive simulated annealing
model to modify the temperature, updates the current and best
solution wire sets, and repeats the loop until T falls below T ei .

Overall procedure. Algorithm 2 presents the overall metaheuristic
procedure to look for the global best wire set. After the various
initializations at the beginning, the procedure performs Nrun runs
of Algorithm 1 on the solution instances to refine their wire sets. We
empirically set Nrun=10, since we found it sufficient for producing
good solutions for the input models presented in Section 7.

Algorithm 2 Overall procedure (Annealing Swarm Model)
Require: G=(V , E), N , Nrun

find all fabricable subwires (i.e., S) in G

find all connectable pairs of subwires in S

for i = 1 to N do
Ii = random {Wi , (T

s
i ,Ci ,T

e
i)} // initialize solution instance

I∗i = Ii // initialize personal best
vi = [0, 0, 0] // initialize param. velocity

end for
G∗ = argminIi E(Wi) // initialize global best: Eq. (1)

for run = 1 to Nrun do
for i = 1 to N do
Wi = ASA(Wi ,T

s
i ,Ci ,T

e
i) // refineWi by Algorithm 1

update vi using Eq. (3)
[T si ,Ci ,T

e
i] = [T si ,Ci ,T

e
i] + vi

if E(WI∗i) > E(Wi) then
I∗i = Ii // update personal best

end if
if E(WG∗) > E(Wi) then

G∗ = Ii // update global best
end if

end for
end for
return WG∗

In Algorithm 2, rather than a single run of the adaptive simulated
annealing model (Algorithm 1) on each solution instance, we run
Algorithm 1 on each solution instance multiple times, without re-
initializing it after each run. Since temperature T in Algorithm 1
reverts back to T si at the beginning of each run, a solution instance
may get out of the local best obtained in previous run, and reach out
to find a better solution in subsequent runs. Moreover, Algorithm 2
updates and refines the annealing parameters of each solution in-
stance after each run by using the parameter velocity (vi) updated
by the following equation (which is a strategy modified from the
particle swarm optimization (PSO) model [Zhang et al. 2015]):

vi = ω · vi + (1 − ω) · r · (AI∗i − Arandom) , (3)
where ω is a weight, which is empirically set as 0.2; r denotes a
one dimensional random variable distributed uniformly in the in-
terval [0, 1]; AI∗i denotes the annealing parameters of the solution
instance’s personal best; and Arandom denotes a three-dimensional
random variable, where the three values are randomized in the
ranges [20, 30], [0.02, 0.002], and [0.02, 0.002], following the ranges
to initialize T si , Ci , and T

e
i at the beginning of Algorithm 2.

Discussion. Ideally, a swarm optimization (such as particle swarm
optimization and ant colony optimization) would leverage some
forms of communication between the solution instances to update
the solution instances, e.g., steering the solution instance towards
the global best in the search space. We have attempted to implement
such a strategy in our metaheuristic model by computing the global
best wire solution and then steering the solution instances towards
it; in short, a transform operator was created to apply join, bridge

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

240:8 • Wallace Lira, Chi-Wing Fu, and Hao Zhang

Fig. 7. A gallery of wire sculptures, which abstract a rich variety of 3D shapes, and the corresponding fabricable Eulerian wires computed by our fully
automatic method. We show both assembled wire models and the individual Eulerian wires laid out to exhibit their complexity.

and split (following the graph editing distance) to modify the wire
set in a solution instance andmake it closer to the global best wire set.
However, the strategy did not improve the results nor the running
time. It is particularly challenging in the setting, given the fact that
the search domain is discrete rather than continuous.

slight
extension

Post-processing & Fabrication. After a so-
lution is found, it is necessary to perform
two post-processing steps on the solution
wire set. First, if a wire in the set stops
right away on some other wires, like a T-
junction, we extend the wire slightly by
1cm and bend its extension part to facili-
tate wire assembly by tying; see the inset
figure shown on the right for an example. Second, we generate the
specification of each wire and apply the double bending strategy to
modify the machine instructions at each necessary bending location.
After that, we fabricate the wires, and then assemble them using
tying wires to produce the final sculpture.

7 RESULTS AND EVALUATION

We ran our experiments on a desktop PC with a four-core Intel
i5 6400 processor and 8GB of DDR4 2800 SDRAM, where multi-
threading was enabled for improved performance. Our method has
the following tunable parameters. The first is α in the objective
function that trades off between minimizing the wire count and
overlap. It is set as 0.03 for all experiments, which conveys our
focus on finding minimal wire counts. Even at a relatively small
value, the parameter can effectively differentiate solutions of the
same wire count but different amount of overlap. Second, the ranges
for T si , Ci , and T

e
i are set as [20, 30], [0.02, 0.002], and [0.02, 0.002],

respectively, so that the solution instances can quickly cool down,
while being able to avoid the local optima. Furthermore, we initialize
the population size N based on the number of subwires in the input
graph. Specifically, we set N as 8, 16, 32, and 64 for graphs with
approximately 500, 1k , 2k , and 4k or more subwires, respectively.
Higher values potentially increase the quality of the solution but
at the expense of more running time. We argue that the number of
subwires is a better measure of a model’s complexity rather than

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

Fabricable Eulerian Wires for 3D Shape Abstraction • 240:9

Fig. 8. The input Bunny and Armadillo models were obtained by decimating the original meshes to 100 and 300 faces, respectively. Note the challenges of
constructing Eulerian wires for these models: the wires have to zigzag along the mesh edges; yet they have to be machine fabricable.

Table 1. Statistics of the model complexity of the inputs, results from beam search, results from Simulated Annealing using the model in WrapIt [Iarussi et al.
2015], and results from our method. From left to right: |V | and |E | denote the number of vertices (nodes) and edges in the input graph; |S | is the number of
fabricable subwires found in the input; |W | denotes the wire count in a solution; overlap denotes the amount of wire overlap as a percentage of the total wire
length; T denotes the time taken in seconds to generate a solution; and N denotes the population size in our annealing swarm model. Note that we mark
the best solution for each input model in boldface, and put asterisks (*) next to the wire count numbers for the globally optimum solutions with the fewest
possible number of wires to cover the input model (see discussion for the details).

Model Complexity Beam Search Simulated Annealing (WrapIt) Annealing Swarm
Models Fig. |V | |E| |S| |W| overlap T |W| overlap T |W| overlap T N

Helix 7 2 1 1 1* 0.0% 0.0s 1* 0.0% 0.0s 1* 0.0% 0.0s 8
Cube 12(a),14 8 12 156 2* 16.7% 0.4s 2* 16.7% 20.1s 2* 16.7% 6.4s 8
Bed 14 16 20 200 4 0.0% 0.6s 3* 18.2% 21.9s 3* 18.2% 4.6s 8
Milk Carton 7,14 12 18 256 3 5.4% 0.6s 2* 10.8% 23.2s 2* 10.8% 3.8s 8
Teddy 7,14,13 10 20 599 3* 0.0% 2.4s 3* 0.0% 109.2s 3* 0.0% 21.3s 8
Horse 7 19 32 605 3* 8.7% 22.8s 4 1.2% 224.8s 3* 7.8% 48.7s 8
Church 7 31 47 615 3* 28.4% 25.8s 3* 16.9% 131.1s 3* 16.8% 32.4s 8
Cup 7 13 25 714 3* 0.0% 7.8s 3* 0.0% 51.0s 3* 0.0% 8.1s 8
Diamond 7 17 32 1174 4* 3.6% 13.2s 4* 1.8% 32.2s 4* 0.0% 10.5s 16
Airplane 7,13 20 42 1426 4 8.7% 25.8s 4 2.6% 51.0s 4 3.6% 33.2s 16
Camera 7 32 60 1777 4 15.1% 94.2s 5 6.6% 246.2s 4* 5.8% 103.9s 32
Iron 1,4,7,13 35 69 2362 4 12.1% 91.8s 4 2.4% 83.2s 3* 0.0% 51.8s 32
Guitar 7,13 54 96 2890 6 23.8% 221.4s 6 16.0% 141.1s 5 8.2% 68.4s 32
Bunny 8 52 150 20406 - - - 9 15.6% 211.0s 9 13.1% 67.9s 64
Armadillo 8 152 449 66595 - - - 25 21.6% 1067.17s 23 22.4% 396.6s 64

the number of nodes and edges in the input graph, since it accounts
for the graph topology and wire fabricability constraints.

Ground truth. For most input graphs, there are no known ways of
determining the ground truth wire count or the optimal overlap
percentage. However, a 0% is clearly the best possible value for
overlap, and we can also provide a theoretical lower bound on the
wire counts, owing to fabricability constraints. Since a fabricable
wire cannot self intersect, any graph vertex can only be visited by a
wire at most once. Therefore, it follows that the wire count for any
Eulerian wire problem should at least be ⌈deg(v∗)/2⌉, where v∗ is
the vertex with maximum valence in the input graph G.

Eulerian wire results. Figures 7 and 8 present the visual galleries of
the wire layout results computed by our method, together with the

constituting Eulerian wires. As we can see, the input wire sculptures
show abstractions of both man-made and organic 3D objects, as
well as shapes of varying complexity. The Bunny and Armadillo
models shown in Figure 8 are particularly challenging. These models
were generated by decimating the original Bunny and Armadillo
meshes to 100 and 300 faces, respectively.

Table 1 reports the input model statistics, and then the timing, wire
count, and overlap for our method, as well as Beam Search and
Simulated Annealing (SA). We implement Beam Search with a beam
width of 75, and implement SA by adopting the optimization scheme
in WrapIt [Iarussi et al. 2015]; however, since WrapIt assumes no
wire overlap, we add our bridge operator to the SA implementation.
Solutions giving the lowest wire count and lowest overlap are shown

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

240:10 • Wallace Lira, Chi-Wing Fu, and Hao Zhang

in boldface, and if a wire count is optimal, based on the theoretical
lower bound described above, we mark it with an asterisk.

Our method is able to find Eulerian wire solutions with few wires
and small overlap, outperforming or matching solutions attained by
the other two alternative approaches for most tested models; the
only exception is the Airplane. For the Teddy, Cup, Diamond, and
Iron models, our method is able to find the global optima, since in
these cases the wire count equals the theoretical lower bound and
the overlap is 0%. In terms of running time, Beam Search often wins
for simpler input models, but it does not scale well. For example,
for the two most complex models, i.e., Bunny and Armadillo (see
the last two rows in the table), the search was unable to converge
to a solution after 30 minutes. Comparing between SA and our
Annealing Swarm optimization, we can generally see a two to five
times speed-up of our method over SA. Also, note that the results
for these two models have comparatively higher number of Eulerian
wires and wire overlaps for two reasons. First, long wires in these
models are geometrically more complex than long wires in other
models, since zigzagging wires have a higher chance of colliding
with the bending head, which in turn conflicts with the machine
fabricability constraints. Second, their graph structures are more
complex, requiring more fabricable wires to cover the entire graph.

Scalability. To examine the scalability of the optimization schemes
for our Eulerian wire problem, we must first find out how the prob-
lem complexity grows. It turns out that the problem does not become
computationally more expensive if one merely increases the ver-
tex/edge count in the input graph. This is confirmed by Figure 9
(top-left), where we show that the timing plots for the three opti-
mization alternatives, Beam Search, Simulated Annealing (SA), and
our Annealing Swarm, all remain essentially flat as we progressively
subdivide the edges in a wired cube.

On the other hand, the
complexity of the problem
does grow when there is
a larger and more diverse
set of graph paths to ex-
plore. For example, this
would happen when the vertex valences increase in the graph. To
this end, we have devised a recursive schema to generate intercon-
nected cubes (or any other surface wire sculptures) via embedding,
as shown in the above inset figure. This provides us with a simple
means to programmatically generate arbitrarily complex graphs,
contingent on the number of recursions employed to generate them.

Figure 9 (top-right) shows the timing plots for the three optimization
schemes as more andmore cubes are embedded inside a regular cube.
We also show the wire counts and overlap percentages obtained for
the different inputs in the figure. As one can see, Beam Search has
poor scalability and its running time grows exponentially, while
SA and Annealing Swarm exhibit significantly better scalability.
The Annealing Swarm optimization scheme clearly outperforms
the other two alternatives in terms of both wire count and overlap
at all complexity levels, with only one exception, for the simplest
case with only one embedded cube. Furthermore, the running time

0

500

1000

1500

1 2 3 4 5 6 7 8

ti
m

e
(s

)

Cube Embeddings

Annealing Swarm

SA

Beam Search

0

5

10

15

20

25

1 2 3 4 5 6 7 8

ti
m

e
 (

s)

Edge Subdivisions

0%
5%

10%
15%
20%
25%
30%

o
ve

rl
ap

0

2

4

6

8

10

|

|

1 2 3 4 5 6 7 8

Solution Statistics over # Cube Embeddings

Fig. 9. Results of the scalability test for the three optimization alternatives
(Beam Search, Simulated Annealing (SA), and our Annealing Swarm) with
varying edge subdivisions and cube embeddings. Note that “#Cube embed-
dings” denotes the number of additional cubes embedded inside a regular
cube. Top left: timing plot over progressively refined cubes via edge subdivi-
sion. Top right and bottom: timing plot and wire count + overlap statistics,
over increasing cube embeddings.

16

32

64

128

256

512

1024

lo
g 2

(
ru

n
n

in
g

ti
m

e
)

 (
s)

N

0

3

6

9

12

0%

5%

10%

15%

20%

8

|

|
o

ve
rl

ap

Solution Statistics for
8 Cube Embeddings over N

16 32 64 128 256 512

8 16 32 64 128 256 512

Fig. 10. Effect of population size N in our Annealing Swarm scheme on the
running time (left), wire count |W |, and overlap amount (right), using the
most complex cube embedding model in Figure 9.

of our approach naturally improves as more computing cores are
available, since particle updates in each iteration are parallelized.

For each method, we execute each experiment (edge subdivisions
and #cube embeddings) 100 times, from which we report the median
results. Annealing swarm parameters are defined as in the previous
section, while N is set at 64. The parameters for the SA search were
T s = 100,C = 0.001, andT e = 0.001. The reason for choosing these
parameters was to keep the SA procedure in a similar running time
frame as our method. PushingC andT e both to 0.0001 would result
in better outputs but at a significantly higher running time cost. The
beam width of the Beam Search procedure was kept at 75, consistent
with the experiments shown in Table 1.

Impact of population size N . To assess the impact of the parameter N
in our Annealing Swarm optimization, we took the Cube with eight
embeddings and ran the optimization with this parameter ranging
from 8 to 512. Figure 10 presents the results of this experiment. The
left plot shows that the running time of our method roughly scales
linearly with N . On the right, the two plots show the changes in

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

Fabricable Eulerian Wires for 3D Shape Abstraction • 240:11

Fig. 11. Breaking a single Eulerian non-fabricable wire into fabricable wires
using our algorithm. Each result was produced in about 1.5 minutes. The
relatively high amount of wires for such topologically simple inputs is a
direct result of the fabricability constraints. For instance, the “eyes” of the
Catmodel (middle) involve sharp twisting, which is not fabricable; therefore,
these “eyes” become a breaking point on the wire.

Fig. 12. Eulerian wire cover vs. planar contour abstraction, for the cube. (a)
shows the result produced by our algorithm which cover the 12 edges of the
cube using two wires. It is possible to obtain a non-overlapping solution (b)
by modifying α in the objective function to 0.97 and disabling the bridge
operator in our method. (c) Covering the cube edges using planar contours
must incur significant overlap. (d) A “gift wrapping” represents the most
efficient way to abstract a cube using non-overlapping planar contours.

wire count and overlap percentage for eachN . Note that the solution
quality only improves moderately when N goes beyond 64.

Single input wire. The Helix model is a single fabricable wire, serv-
ing as a simple sanity check to show that our method does return
the expected solution (see the first row of Table 1); it is also represen-
tative of those freeform wire structures that do not admit efficient
planar cross-sectional constructions.Further, the three wire models
provided in Figure 11 are results produced by the image-based wire
reconstruction of Liu et al. [2017a]. Each result is an unstructured
long wire that is not suitable for planar cross-sectional constructions,
like the Helix. Given the machine fabricability constraints, these
wires are not fabricable without breaking them.

3D wires vs. planar contours. In the work of Miguel et al. [2016], a
3D shape is abstracted by a set of given planar contours. Planar
cross-sectional abstractions are more suited to man-made objects,
not general and freeform structures such as the Helix, Teddy, and
Horse models, and the models shown in Figure 11. Our method
produces “3D space” wires and is applicable to richer sets of inputs.
Besides planarity, closed-ness of the wires is also a relevant factor.
Consider a simple cube for example, using a set of planar contours
to cover all its edges would necessitate significant (33%) overlap,
as shown in Figure 12(c). Also, the four planar contours cannot be
held together by wire friction, as they do not “cross” each other. A

“gift wrapping” style abstraction would be possible, but it does not
cover the cube edges. As for our method, it can produce efficient
covers of the cube edges using non-planar wires, with or without
overlap, by controlling parameter α in the objective function and
enabling/disabling the bridge operator; see Figures 12(a)-(b).

Human performance. To obtain a sense of how difficult the Eulerian
wire construction problem is for a human, we selected three sim-
ple wire models: Cube, Bed, andMilk Carton (see Table 1), and
recruited ten participants who are graduate students (five males
and five females) aged from 22 to 29 on a volunteer basis. In this
experiment, we first introduced to each of them the concepts of 3D
graph representations, simple paths and path overlaps in around
five to ten minutes, and then gave each of them a maximum of
20 minutes to work on each model. None of them used up the 20
minutes in working out a solution. For each model, our instruction
to them was to find as few simple paths as possible to cover the
given graph with minimal path overlaps.

We recorded the solutions found by the participants as well as the
time spent. For the simplest model, which is Cube, all participants
were able to find the optimal solution with two wires and two over-
lapping edges, but it took them 8.5 minutes on average. The other
two models are, however, more challenging for humans. For Bed,
only three of them found the three-wire solution produced by our
method, while for Milk Carton, only one participant found a two-
wire solution; however, that solution has larger overlap percentage
(21.7%) compared to our solution (10.8%) and all others found three-
wire solutions with varying amount of overlaps. Figure 14 shows
the timing and solution results, and presents the Bed model.

Clearly, even for these simple models, there is a large gap between
human performance and what a computational approach such as our
method could achieve. Particularly, it is challenging for humans to
find solutions with lowest wire counts while having a small overlap.
It is hard to imagine that humans could come up with the three-wire
solution for the Iron model in a reasonable time.

Physical fabrication. Using the wire bending machine shown in
Figure 3, we fabricated several wire sculptures of different shapes
and varying complexity using the results produced by our method;
see Figure 13. The machine bent lightweight aluminum wires of
0.126" thickness and the resulting wires were assembled using thin
tying wires; besides tying, one may assemble wires by soldering or
by using 3D printed connectors as in [Liu et al. 2017b]. We built the
wire bending machine ourselves, after purchasing the machine parts
of the DIWire Bender1. Wire fabrication time depends not only on
the wire length, but also on the amount of bending and rotation
operations. In short, complex wires take longer time to fabricate
than simple wires of the same length.

Challenging models. There are several challenging situations aris-
ing from the input models, resulting in high search cost and/or
high wire count or overlap by our current method. For example: (i)
Highly intertwined or self-convolved wires, e.g., a densely packed
3D Hilbert curve or a dense helix with small gaps in-between cy-
cles (compared to the sparse Helix in Figure 7). Since the bending
1http://www.instructables.com/id/DIWire-Bender/

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

240:12 • Wallace Lira, Chi-Wing Fu, and Hao Zhang

Fig. 13. Wire sculptures (left) we fabricated from our results, and the five Eulerian wires (right) constructed by our method for the Guitar model; see also
Figure 1 and Figure 4 for the fabricated Iron model and its Eulerian wires.

Fig. 14. Top: timing, wire count, and overlap results produced by ten partici-
pants on Cube, Bed, andMilk Carton. The red bars show results produced
by our method, while the asterisks (*) mark comparable participant results.
Bottom: 3D views of the three models we presented to the participants.

head can easily collide with the wire, wire fabricability would force
the solution to contain many short wires. (ii) Graphs with many
odd-degree vertices (e.g., the corners in the Cube); at such a vertex,
we need at least one wire to start/end exactly at the vertex, or the
wire would overlap next to the vertex. (iii) Models with complex
structures, such as the Bunny and Armadillo (see Figure 8). While
these challenging cases are generally a consequence of the problem
setting and physical limitations of the machine, case (iii) is particu-
larly challenging, since a complex sculpture involves an immense
search space and requires more wires to cover the model.

8 DISCUSSION, LIMITATION, AND FUTURE WORK

We present a computational approach to realizing line and curve
abstractions of 3D shapes using non-planar wires that are fabri-
cable by a wire bending machine. The problem is complex, since
the search space is immense and we have to consider wire fabrica-
bility by the machine. The method we develop combines efficient
search strategies formulated as a population-based hybrid meta-
heuristic model, and precomputation of wire fabricability by means
of subwires. We demonstrate that our method is able to efficiently
find promising Eulerian wire constructions, where the wires can be
physically produced by the wire bending machine and assembled
into the target wire sculpture. Comparisons with other optimization
alternatives including Beam Search and Simulated Annealing also
clearly show the advantages of our Annealing Swarm strategy in
terms of scalability and wire solution quality. Our method is general
and versatile. It is applicable to wire abstractions of both man-made
objects and freeform organic structures. It also offers the flexibility
of trading off between optimal wire count and Eulerianity.

Limitations. Our current solution does not consider weight bearing,
stability, or other structural properties of the physical wire sculpture
produced. If the wire sculpture is not only displayed as an art piece
but also put to use, then functionality is also a concern, which we
do not yet account for. In addition, our current search for candidate
wires is not symmetry-aware. That is, we cannot ensure that all the
final wires produced are symmetric to one another, even if the input
abstract has global symmetry. Such symmetries may be desirable
from an aesthetics or functionality perspective.

Another aesthetic issue related to wire construction is the place-
ment of connectors to stabilize the wire assembled. Minimizing the
number of connectors is certainly desirable. In our current problem
setting, a connector is needed at any graph vertex whose valence is
greater than two, since two separate wires would go through that
vertex. Hence reducing the need for other types of connectors is
equivalent to minimizing wire count. Furthermore, we may need ad-
ditional connectors to reinforce the stability of long overlaps. While
our optimization scheme does not directly address this concern, the
proposed solution explicitly avoids long overlaps. Finally, reachabil-
ity may be a general concern for adding connectors or tying wires,
as it may be hard to reach the interior of a sculpture. This issue is

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

Fabricable Eulerian Wires for 3D Shape Abstraction • 240:13

not problematic for our current inputs, since they are all surface
abstractions of 3D shapes.

How to properly utilize force and friction when assembling the wire
sculpture to ensure stability without tying wires is also an interest-
ing problem. Miguel et al. [2016] addressed it for 2D wires. However,
like WrapIt [Iarussi et al. 2015], we opted to use thin tying wires to
join adjacent wire pieces together. This is a simple and economical
solution that helps ensure the stability at the connections while
maintaining an aesthetic appeal of the “wire-on-wire” assembly.

In terms of wire assembly, one advantage of having only few pieces
of long wires is that quite likely, each wire covers a large portion of
the target shape so that it is more identifiable and also more visually
distinguishable from the other wires. This makes the assembly pro-
cess more straightforward than the case where one must put many
short (hence less distinguishable) wires together. Still, we do not
compute an optimal assembly order, nor do we account for possible
unresolvable collisions between the wires during assembly.

Future work. Addressing the computational and physical limita-
tions of our current approach already suggests several avenues for
future work. Incorporating symmetry, structural, and functional
constraints, as well as the utilization of frictional contacts (thus re-
moving the need for tying wires) into the problem formulation will
strengthen the solution. Combining these constraints with the use
of industrial grade materials and wire benders would further enable
our approach to create functional wire models such as drone frames
and household utensils. Computing an assembly order, possibly one
leading to interlocking, is another intriguing problem to pursue.

In addition, there are interesting variations of our current wire
construction problem to explore. For example, one may forego the
desire to have a low wire count. Instead, the goal may be to produce
a final set of fabricable wires that are suitable as pieces of a difficult
assembly puzzle. Another variation is a true “Eulerian version” of
the problem. Instead of taking a given wire abstraction as input and
seeking a cover, we take in a 3D surface model without any wire-
frame specifications. The goal is to compute a single and fabricable
wire, which provides the best abstraction of the input model.

ACKNOWLEDGEMENTS

Wewould like to thank the anonymous reviewers for their insightful
comments. We also thank Matthew Cao for his help assembling
the wire bending machine and Yang Tian for his help on the user
study. This work is supported in part by grants from NSERC Canada
(611370) and Adobe gift funds for Hao Zhang, the Research Grants
Council of the Hong Kong Special Administrative Region (Project
no. CUHK 14203416 and 14201717) for Chi-Wing Fu. Wallace Lira is
supported by SFU’s C.D. Nelson Entrance Scholarship.

REFERENCES

Nader Azizi and Saeed Zolfaghari. 2004. Adaptive Temperature Control for Simulated
Annealing: A Comparative Study. Comput. Oper. Res. 31, 14 (Dec. 2004), 2439–2451.
https://doi.org/10.1016/S0305-0548(03)00197-7

Weikai Chen, Xiaolong Zhang, Shiqing Xin, Yang Xia, Sylvain Lefebvre, and Wenping
Wang. 2016. Synthesis of Filigrees for Digital Fabrication. ACM Trans. on Graph.
(SIGGRAPH) 35, 4, Article 98 (July 2016), 13 pages. https://doi.org/10.1145/2897824.
2925911

Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. iWIRES: An Analyze-
and-edit Approach to Shape Manipulation. ACM Trans. on Graph. (SIGGRAPH) 28,
3, Article 33 (July 2009), 10 pages. https://doi.org/10.1145/1531326.1531339

Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun,
Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. on Graph.
(SIGGRAPH) 33, 4, Article 66 (July 2014), 12 pages. https://doi.org/10.1145/2601097.
2601106

Yijiang Huang, Juyong Zhang, Xin Hu, Guoxian Song, Zhongyuan Liu, Lei Yu, and
Ligang Liu. 2016. FrameFab: Robotic Fabrication of Frame Shapes. ACM Trans. on
Graph. (SIGGRAPH Asia) 35, 6, Article 224 (Nov. 2016), 11 pages. https://doi.org/10.
1145/2980179.2982401

Emmanuel Iarussi, Wilmot Li, and Adrien Bousseau. 2015. WrapIt: Computer-assisted
Crafting of Wire Wrapped Jewelry. ACM Trans. on Graph. (SIGGRAPH Asia) 34, 6,
Article 221 (Oct. 2015), 8 pages. https://doi.org/10.1145/2816795.2818118

Jon Kleinberg and Eva Tardos. 2005. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Lingjie Liu, Duygu Ceylan, Cheng Lin, WenpingWang, and Niloy J. Mitra. 2017a. Image-
based Reconstruction of Wire Art. ACM Trans. on Graph. (SIGGRAPH Asia) 36, 4,
Article 63 (July 2017), 11 pages. https://doi.org/10.1145/3072959.3073682

Ligang Liu, Charlie Wang, Ariel Shamir, and Emily Whiting. 2014. 3D Printing Ori-
ented Design: Geometry and Optimization. (2014). https://doi.org/10.1145/2659467.
2675050 SIGGRAPH Asia Course.

Min Liu, Yunbo Zhang, Jing Bai, Yuanzhi Cao, Jeffrey M. Alperovich, and Karthik
Ramani. 2017b. WireFab: Mix-Dimensional Modeling and Fabrication for 3D Mesh
Models. In Proc. CHI Conf. on Human Factors in Computing Sys. 965–976.

Eder Miguel, Mathias Lepoutre, and Bernd Bickel. 2016. Computational Design of
Stable Planar-rod Structures. ACM Trans. on Graph. (SIGGRAPH) 35, 4, Article 86
(July 2016), 11 pages. https://doi.org/10.1145/2897824.2925978

Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer,
François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D Printed Previews
for Fast Prototyping. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology. 273–280.

Hao Pan, Yang Liu, Alla Sheffer, Nicholas Vining, Chang-Jian Li, and Wenping Wang.
2015. FlowAligned Surfacing of Curve Networks. ACMTrans. on Graph. (SIGGRAPH)
34, 4, Article 127 (July 2015), 10 pages. https://doi.org/10.1145/2766990

Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,
Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod
Meshes. ACM Trans. on Graph. (SIGGRAPH) 34, 4, Article 138 (July 2015), 12 pages.
https://doi.org/10.1145/2766998

Ariel Shamir, Bernd Bickel, and Wojciech Matusik. 2016. Computational Tools for 3D
Printing. (2016). https://doi.org/10.1145/2897826.2927367 SIGGRAPH Course.

Cesar Torres, Wilmot Li, and Eric Paulos. 2016. ProxyPrint: Supporting Crafting Practice
Through Physical Computational Proxies. In Proceedings of the 2016 ACM Conference
on Designing Interactive Systems (DIS ’16). ACM, New York, NY, USA, 158–169.
https://doi.org/10.1145/2901790.2901828

Nobuyuki Umetani, Bernd Bickel, and Wojciech Matusik. 2015. Computational Tools
for 3D Printing. (2015). https://doi.org/10.1145/2776880.2792718 SIGGRAPH Course.

Wikipedia. 2018a. Beam search — Wikipedia, The Free Encyclopedia. (2018). https:
//en.wikipedia.org/wiki/Beam_search [Online; accessed 29-May-2018].

Wikipedia. 2018b. Wire sculpture — Wikipedia, The Free Encyclopedia. (2018). https:
//en.wikipedia.org/wiki/Wire_sculpture [Online; accessed 3-January-2018].

Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Print-
ing Arbitrary Meshes with a 5DOF Wireframe Printer. ACM Trans. on Graph.
(SIGGRAPH) 35, 4, Article 101 (July 2016), 9 pages. https://doi.org/10.1145/2897824.
2925966

Baoxuan Xu, William Chang, Alla Sheffer, Adrien Bousseau, James McCrae, and Karan
Singh. 2014. True2Form: 3D Curve Networks from 2D Sketches via Selective Regu-
larization. ACM Trans. on Graph. (SIGGRAPH) 33, 4, Article 131 (July 2014), 13 pages.
https://doi.org/10.1145/2601097.2601128

Ya-Ting Yue, Xiaolong Zhang, Yongliang Yang, Gang Ren, Yi-King Choi, and Wenping
Wang. 2017. WireDraw: 3D Wire Sculpturing Guided with Mixed Reality. In Proc.
CHI Conf. on Human Factors in Computing Sys. 3693–3704.

Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing
Structurally-sound Ornamental Curve Networks. ACM Trans. on Graph. (SIGGRAPH)
35, 4, Article 99 (July 2016), 10 pages. https://doi.org/10.1145/2897824.2925888

Yu-Dong Zhang, Shuihua Wang, and Genlin Ji. 2015. A Comprehensive Survey on
Particle Swarm Optimization Algorithm and Its Applications. 2015 (01 2015), 1–38.

Henrik Zimmer, Florent Lafarge, Pierre Alliez, and Leif Kobbelt. 2014. Zometool shape
approximation. Graphical Models 76, 5 (2014), 390–401.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 240. Publication date: November 2018.

https://doi.org/10.1016/S0305-0548(03)00197-7
https://doi.org/10.1145/2897824.2925911
https://doi.org/10.1145/2897824.2925911
https://doi.org/10.1145/1531326.1531339
https://doi.org/10.1145/2601097.2601106
https://doi.org/10.1145/2601097.2601106
https://doi.org/10.1145/2980179.2982401
https://doi.org/10.1145/2980179.2982401
https://doi.org/10.1145/2816795.2818118
https://doi.org/10.1145/3072959.3073682
https://doi.org/10.1145/2659467.2675050
https://doi.org/10.1145/2659467.2675050
https://doi.org/10.1145/2897824.2925978
https://doi.org/10.1145/2766990
https://doi.org/10.1145/2766998
https://doi.org/10.1145/2897826.2927367
https://doi.org/10.1145/2901790.2901828
https://doi.org/10.1145/2776880.2792718
https://en.wikipedia.org/wiki/Beam_search
https://en.wikipedia.org/wiki/Beam_search
https://en.wikipedia.org/wiki/Wire_sculpture
https://en.wikipedia.org/wiki/Wire_sculpture
https://doi.org/10.1145/2897824.2925966
https://doi.org/10.1145/2897824.2925966
https://doi.org/10.1145/2601097.2601128
https://doi.org/10.1145/2897824.2925888

	Abstract
	1 Introduction
	2 Related Work
	3 Problem formulation
	4 Background and Overview of Approach
	5 Constructing Subwires with Fabricability
	5.1 Machine Fabricability
	5.2 Optimizing Fabricability Evaluation

	6 Annealing Swarm Model
	7 Results and Evaluation
	8 Discussion, Limitation, and Future Work
	References

